

Release of the latest information of Puric ω

Case example of the measurement using Puric ω ultrapure water

(Analysis example of the Triple Quadrupole ICP-MS)

Case example of measuring trace metal by ICP-MS

PerkinElmer Japan cooperated for the analysis for trace metal in Puric ω ultrapure water by using ICP-MS.

Analysis conditions

Analysis device : NexION5000 Multi-Quadrupole ICP-MS

(PerkinElmer)

Analysis method : Ultrapure water is sampled from Puric ω and

measured by ICP-MS

*Calibration curve is created with 0.2% nitric acid added in Puric ω ultrapure water and, DL and BEC are calculated.

NexION 5000

■ Analysis Data of major elements by NexION5000

Element	Mass No.	BEC (ppt)	DL (ppt)
Li	7	<dl< td=""><td>0.0007</td></dl<>	0.0007
Ве	9	<dl< td=""><td>0.1</td></dl<>	0.1
В	11	<dl< td=""><td>1</td></dl<>	1
Na	23	0.03	0.01
Mg	24	<dl< td=""><td>0.009</td></dl<>	0.009
Al	27	0.03	0.01
Р	31	4	2
K	39	0.06	0.02
Ca	40	0.03	0.02
Ti	48	<dl< td=""><td>0.04</td></dl<>	0.04
V	51	<dl< td=""><td>0.006</td></dl<>	0.006
Cr	52	<dl< td=""><td>0.02</td></dl<>	0.02
Mn	55	<dl< td=""><td>0.02</td></dl<>	0.02
Fe	56	<dl< td=""><td>0.01</td></dl<>	0.01

Element	No.	(ppt)	(ppt)
Co	59	<dl< td=""><td>0.0009</td></dl<>	0.0009
Ni	60	<dl< td=""><td>0.2</td></dl<>	0.2
Cu	63	<dl< td=""><td>0.009</td></dl<>	0.009
Zn	66	<dl< td=""><td>0.1</td></dl<>	0.1
Ga	69	<dl< td=""><td>0.001</td></dl<>	0.001
Ge	74	<dl< td=""><td>0.03</td></dl<>	0.03
As	75	<dl< td=""><td>0.05</td></dl<>	0.05
Sr	88	<dl< td=""><td>0.002</td></dl<>	0.002
Zr	90	<dl< td=""><td>0.009</td></dl<>	0.009
Nb	93	<dl< td=""><td>0.02</td></dl<>	0.02
Мо	98	<dl< td=""><td>0.01</td></dl<>	0.01
Ru	102	<dl< td=""><td>0.06</td></dl<>	0.06
Rh	103	<dl< td=""><td>0.02</td></dl<>	0.02
Pd	106	<dl< td=""><td>0.02</td></dl<>	0.02

Element	Mass No.	BEC (ppt)	DL (ppt)
Ag	107	<dl< td=""><td>0.2</td></dl<>	0.2
Cd	111	<dl< td=""><td>0.06</td></dl<>	0.06
In	115	<dl< td=""><td>0.006</td></dl<>	0.006
Sn	118	<dl< td=""><td>0.1</td></dl<>	0.1
Sb	121	<dl< td=""><td>0.01</td></dl<>	0.01
Ва	138	<dl< td=""><td>0.008</td></dl<>	0.008
Hf	180	<dl< td=""><td>0.02</td></dl<>	0.02
Ta	181	<dl< td=""><td>0.009</td></dl<>	0.009
W	184	<dl< td=""><td>0.03</td></dl<>	0.03
Au	197	<dl< td=""><td>0.1</td></dl<>	0.1
TI	205	<dl< td=""><td>0.05</td></dl<>	0.05
Pb	208	<dl< td=""><td>0.007</td></dl<>	0.007
Bi	209	<dl< td=""><td>0.01</td></dl<>	0.01
U	238	<dl< td=""><td>0.01</td></dl<>	0.01

About the analysis results

By "Multi-Quadrupole ICP-MS", Puric ω water is proved to be of high purity as almost all elements shows ppq levels for BEC. Particularly, P show single-digit ppt, which is the element hard to be detected, and B shows extremely low, which is hard to reduce from ultrapure water. So, it is confirmed that Puric ω ultrapure water is suitable to blank water for Multi-Quadrupole ICP-MS.

*BEC contains the backgrounds from air during dispensing, reagents and equipment, etc.

◀ For more information, visit our website!

https://puric.organo.co.jp/en/